
Response of degree-correlated scale-free networks to stimuli

Sheng-Jun Wang,1 An-Cai Wu,1 Zhi-Xi Wu,1 Xin-Jian Xu,2 and Ying-Hai Wang1,*
1Institute of Theoretical Physics, Lanzhou University, Lanzhou Gansu 730000, China

2Departamento de Física da Universidade de Aveiro, 3810-193 Aveiro, Portugal
�Received 27 October 2006; revised manuscript received 3 February 2007; published 23 April 2007�

The response of degree-correlated scale-free attractor networks to stimuli is studied. We show that degree-
correlated scale-free networks are robust to random stimuli as well as the uncorrelated scale-free networks,
while assortative �disassortative� scale-free networks are more �less� sensitive to directed stimuli than uncor-
related networks. We find that the degree correlation of scale-free networks makes the dynamics of attractor
systems different from uncorrelated ones. The dynamics of correlated scale-free attractor networks results in
the effects of degree correlation on the response to stimuli.
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Many complex systems have the ability to react to low
levels of special stimuli, whereas they can maintain their
state when exposed to high levels of other irrelevant stimuli
�1�. If we take the units of response as nodes and the inter-
actions between responding units as edges, the structure of
some these systems can be described as complex networks.
In neural networks or social networks, for example, the
nodes are individual neurons or persons. It is an interesting
problem how one system has both sensitivity to the right
stimuli and robustness in the face of the wrong one. And the
problem is also important for designing large artificial com-
plex systems. The source of the ability of networked com-
plex systems to incorporate the two complementary at-
tributes has been investigated using network models. It was
shown that the power-law shape degree distributions of net-
works give rise to the sensitivity and robustness in a system
�1�.

The topology of real networks is also characterized by
degree correlation �2–4�. In a network with degree correla-
tion, there exist certain relationships between network nodes.
The degree correlations are often named, respectively, “as-
sortative mixing”—i.e., a preference for high-degree nodes
to attach to other high-degree nodes—and “disassortative
mixing”—i.e., high-degree nodes attach to low-degree ones
�4�. It has been pointed out that the existence of degree cor-
relations among nodes is an important property of real net-
works �5–14�. The percolation �4� and disease spreading �15�
on correlated networks have been studied. And more effects
of degree correlation on network structure and function have
attracted attention �16–18�. Therefore, an extension of previ-
ous results for uncorrelated network model about responding
to stimuli is necessary.

In this paper, we study the response of degree-correlated
scale-free networks to stimuli following the work contributed
by Bar-Yam and Epstein �1�. Numerical investigation reveals
that the dynamical process of the evolution of attractor sys-
tems on correlated scale-free networks is different from un-
correlated networked systems. The special dynamics of cor-
related attractor systems results in a different responding
behavior from uncorrelated systems. The degree-correlated

scale-free network is robust in the face of wrong stimuli as
uncorrelated networks. In assortative networks, the sensitiv-
ity to right stimuli is enhanced, while in the disassortative
networks the sensitivity to right stimuli is weaker than un-
correlated networks. And the relation between the sensitivity
to stimuli and the degree of correlation is not monotonic.

We consider the method for modeling the response of
complex systems proposed in �1�. We use a model of attrac-
tor networks �19,20�, where the node states si= ±1, i
� �1, . . . ,N� are binary. The state of the system is the set of
node states �si�. The dynamical equation of the attractor sys-
tem is

si�t + 1� = sgn��
j=1

N

Jijsj�t�	 , �1�

with symmetric influence matrix Jij. Using the Hebbian im-
printing rule

Jij = �
�

cijsi
�sj

�, �2�

we can set the states �si
���=1,. . .,n as the stable states of the

network dynamics �attractor�. cij is the entry of the symmet-
ric adjacent matrix which is equal to 1 when node i connects
to node j and zero otherwise. An attractor is stable to pertur-
bation and thus can represent a functional state of systems. In
simulations, we randomly choose two functional states of the
system, �si

���=1,2, and the influence is Jij =��=1
2 cijsi

�sj
�. Exter-

nal stimuli are modeled by changing the signs of a specified
set of nodes. When the states of some nodes are flipped, the
system either evolves back to its initial state or switches to
other stable system states. The response of networked sys-
tems is described as a process of switching between attrac-
tors. The size of the basin of attraction, the number of nodes
whose states can be changed before the dynamics of the net-
work fails to bring the system back to its original state, in-
dicates the degree of stability of the system. We calculate the
size of the basin of attraction in different cases of stimuli to
reveal the sensitivity and robustness of the network model.

Generally, degree-correlated networks can be generated
from uncorrelated ones by means of reshuffling method pro-
posed in �5�. Starting from a given network, at each step two
edges of the network are chosen at random. The four nodes*Electronic address: yhwang@lzu.edu.cn
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attached to the two edges are ordered with respect to their
degrees. Then with probability p the edges are rewired in
such a way that one edge connects the two nodes with the
smaller degrees and the other connects the two nodes with
the larger degrees; otherwise, the edges are randomly re-
wired. In the case when one or both of these new edges
already existed in the network, the step is discarded and a
pair of other edges is selected. A repeated application of the
rewiring step leads to an assortative networks. For producing
disassortative networks, we change the way for building new
edges used in the above reshuffling method into that the node
of the largest degree connects to the nodes of the smallest
degree and two other node are connected. It is worth noting
that the algorithm does not change the degree distribution in
the given network �5�.

Before investigating the effect of the degree correlation
on the response, we review the results on uncorrelated attrac-
tor networks �1�, where the system was characterized by the
scale-free networks which have the power-law shape degree
distribution P�k�
k−�. The sizes of the basin of attraction
for two kinds of stimuli—namely, the random stimuli �ran-
domly chosen nodes are flipped� and the directed stimuli
�means flipping sequentially the nodes of greatest degree�—
were studied on scale-free attractor network systems. The
relation between the size of the basin of attraction for ran-
dom stimuli br and directed stimuli bm, which are all normal-
ized by network size N, is derived:

bm = br
��−1�/��−2�. �3�

The derivation was based on an assumption that the response
of attractor networks occurs if the sum of edges coming from
stimulated nodes exceeds a threshold which is the same for
both random and directed stimuli. For Barabási-Albert �BA�
scale-free networks �21�, the distribution exponent �=3 and
thus bm=br

2. So the scale-free networks are robust to random
stimuli and sensitive to directed stimuli.

Let us first calculate the average size of the basin of at-
traction for random stimuli br and directed stimuli bm on
degree-correlated BA networks. According to �1�, we use the
network size N=1000 and average degree �k�=20 in all
simulations. Figure 1 shows the average size of attractor ba-
sin versus the degree of correlation which is quantified by
the Pearson correlation coefficient r �4�. To compare with the
uncorrelated case, in Fig. 1 we also plot the predicted size of
the attractor basin for directed stimuli bm� which is calculated
using the size of the attractor basin for random stimuli br
following Eq. �3�. Restricted by the reshuffling method, we
cannot generate networks with strong degree correlation 
r 

→1 �5�. In simulations, the region of the Pearson correlation
coefficient r is about from −0.3 to 0.3. Although the region is
small, it nearly covers all the values of the Pearson correla-
tion coefficient r of realistic complex networks shown in�4�.
Therefore, we are interested in systems with the Pearson cor-
relation coefficient belonging to the region about from −0.3
to 0.3.

In Fig. 1 we can see the effects of the degree correlation
of scale-free networks on the size of the basion of attraction.
Comparing the size of attractor basin bm� predicted using Eq.
�3� �the curve with triangles� with the size obtained by com-

puter simulations �the curve with squares�, one can see that
the relation between the size of attractor basin for random
stimuli br and directed stimuli bm derived in uncorrelated
case is not satisfied in correlated scale-free networks. When
r�0 the numerical result of the attractor basin for directed
stimuli bm is identical with the prediction of uncorrelated
networks bm� �22�. For the assortative case r�0, the basin of
attraction for directed stimuli is less than the value of uncor-
related network. This means that the assortative scale-free
network is more sensitive to directed stimuli than uncorre-
lated scale-free networks. For the disassortative case, the size
of attractor basin undergoes a nonmonotonic process with the
variance of Pearson correlation coefficient. The sensitivity of
disassortative scale-free networks is weaker than uncorre-
lated systems. The size of the basin of attraction for random
stimuli br decreases monotonically with the increase of r.
And the slope is small. The robustness of scale-free networks
to random stimuli is retained when these networks are degree
correlated.

To understand the underlying mechanism of the effect of
degree correlation on response, we analyze the dynamics of
attractor networks. We assume that there are n functional
states in an attractor system. Substitute of Eq. �2� into Eq. �1�
gives

si�t + 1� = sgn��
j=1

N

�
�=1

n

cijsi
�sj

�sj�t�	 = sgn��
�=1

n

si
� �

j�Gi

sj
�sj�t�	 ,

�4�

where Gi is the set of nodes adjacent to node i �the neighbors
of node i�. We use the functional state �si

1� as the original
system state, and the stimulated system state is denoted as
�si

��. Thus the first step of the evolution is like

si�1� = sgn�si
1 �

j�Gi

sj
1sj

� + �
�=2

n

si
� �

j�Gi

sj
�sj

�	 . �5�

FIG. 1. �Color online� The size of attractor basin of scale-free
networks as a function of Pearson correlation coefficient r in the
case of directed �square� and random stimuli �circle�. All networks
have the same network size N=1000 and average degree �k�=20.
Each curve is an average of 1000 realizations. The predicted curve
of bm� calculated using Eq. �3� is shown as the curve with triangles.
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The functional states �si
���=2,. . .,n are uncorrelated with the

stimulated state �si
��, since the functional states are chosen at

random. Thus the second term in the brackets on the right-
hand side of Eq. �5� is approximately equal to 0, and this
term can be taken as noise �19�. For an arbitrary node i, if
much fewer than half the nodes in Gi are flipped by the
stimulus, then si�1�=si

1; if much more than half the nodes in
Gi are flipped, si�1�=−si

1. In general, the fraction of flipped
nodes in Gi increases as stimuli are enhanced. Because of the
influence of noise, when the fraction of flipped nodes in Gi is
near but less than 0.5, the node i choose a state si

1 or −si
1 at

random.
In the case of uncorrelated networks, for both random and

directed stimuli, the fraction of flipped nodes in neighbors of
each node is equal to the fraction f of edges coming from
flipped nodes in a network. This property determines a criti-
cal condition for uncorrelated systems responding to stimuli:
near half edges in a network come from the stimulated
nodes. We obtained the critical value of f on the system with
two functional states by numerical simulation, which is fc
=0.46 for both random and directed stimuli. When stimuli
are large enough to satisfy the critical condition, all nodes in
uncorrelated networks choose their states at random with the
help of noise term. Then, the system state �si�1�� becomes a
random state and evolves to one of attractors randomly. The
analysis of the above property gives insight into the dynam-
ics of uncorrelated networks, that the uncorrelated networks
respond to both kinds of stimuli as a whole.

Figure 2 shows numerical results of the critical fraction of
edges attached to stimulated nodes versus the Pearson corre-
lation coefficient of reshuffling scale-free networks. When
networks are degree correlated, the difference between the
critical fraction fc for random stimuli and directed stimuli is
remarkable. The result shows that the mentioned assumption
used for deriving Eq. �3� in �1� is not appropriate for degree-
correlated scale-free networks. In Fig. 2, one can note that
the critical fraction fc for random stimuli varies slightly. Un-
der random stimuli, for correlated scale-free networks, the
fraction of flipped nodes in the neighbor of each node is
approximately equal to the fraction f of edges coming from

flipped nodes in a network. The dynamics of degree-
correlated scale-free networks under random stimuli has the
same characteristic as uncorrelated networks: the attractor
systems respond to random stimuli as a whole. Under di-
rected stimuli, the variation of fc versus the Pearson correla-
tion coefficient indicates that the dynamics of directed stimu-
lated attractor networks is affected seriously by degree
correlation.

Next we numerically investigate the dynamical process of
the evolution of the attractor system in the case of directed
stimuli and reveal the underlying mechanism of the effect of
degree correlation. To do this, we give a directed stimuli with
size equal to 235 to a realization of the uncorrelated network.
The stimulus is larger than the average attractor basin for
uncorrelated scale-free attractor systems given in Fig. 1
which is equal to 215�±12�. In Fig. 3 the dynamical process
of the evolution of the system is represented by the number
of flipped nodes �Nf�. At the first step of the evolution, the
number of the flipped nodes is 488, which is near half of the
network size. And then the system evolves to another im-
printed functional state, as shown in the inset of Fig. 3. The
evolution shows that the uncorrelated scale-free networks re-
sponse to directed stimuli as a whole, as the above analysis.

For assortative networks, we give a directed stimulus with
the size 170 to attractor systems. Although the size of the
stimuli is smaller than the mentioned average attractor basin
of uncorrelated networks, the system responds to the stimu-
lus with the process of the change of the system state, as
shown in Fig. 4. We note that the number of flipped nodes
increases gradually. In contrast with uncorrelated scale-free
networks, the evolution shows that the assortative scale-free
network system does not make response as a whole. In as-
sortative scale-free networks, nodes of a large degree prefer-
entially connect to nodes of the greatest degrees—i.e., stimu-
lated nodes—and thus they are easier to get the condition for
changing their states. So the set of flipped nodes can be
extended by assortative mixing. The assortative scale-free
network system evolves as a hierarchical cascade �23� that
progresses from higher- to lower-degree classes. Therefore
the basin of attraction of the assortative network system de-

FIG. 2. �Color online� The critical value of the number of edges
attached to flipped nodes as a function of Pearson correlation coef-
ficient in the case of directed �squares� and random �circles� stimuli.
Each curve is an average of 1000 realizations.

FIG. 3. The number of flipped nodes in the process of the evo-
lution of the uncorrelated system. Inset: the number of nodes whose
state si�t� is the same as si

2.
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creases and the system is more sensitive to directed stimuli.
With an increase of the Pearson correlation coefficient,

the cluster coefficient of assortative networks is increased by
the degree-based reshuffling steps �5�. The cluster property
also affects the dynamics of assortative scale-free networks.
In Fig. 4 we show two numerical simulations with different
types of dynamics. For one kind of dynamics �square�, the
stable system states are the functional states imprinted by the
Hebbian rule, as the uncorrelated networks. The upper curve
�square� in the inset of Fig. 4 shows that a system evolves
into the second functional state. For another kind of dynam-
ics �circle�, the stable system state at the end of evolution is
not the imprinted functional state. The lower curve �circle� in
the inset of Fig. 4 shows the discrepancy. In this kind of
systems, a cluster forms between stimulated nodes which
have a high density of edges within them, with a lower den-
sity of edges between other groups of nodes. So these stimu-
lated nodes hold their states on −si

1. Additionally, the state of
some low-degree nodes which connect tightly to the cluster
is also held. These nodes held by the cluster structure result
in the difference between the system state and the imprinted
functional state. There is a critical value rc, for the networks
used in simulations rc=0.32, below which two types of dy-
namics are possible �and larger the value of r is, the more
frequently the second type of dynamics occurs�, while above
which systems only respond to stimuli by the second type of
dynamics. Because of the cluster property of assortative net-
works, too large assortative mixing is not expected for the
response of networks. In the limit of r→1, networks disin-
tegrate into isolated clusters, each of them consisting of
nodes with a certain degree k. Directed stimuli cannot induce
these systems to change their functional states, but only
change a few clusters and leave the other nodes in their ini-
tial states.

For the disassortative system, we choose a reshuffling
scale-free network realization with Pearson correlation coef-
ficient r=−0.16 which has the lowest sensitivity to directed
stimuli as shown in Fig. 1. We give the disassortative net-
work a directed stimulus with size 245 which is larger than
the average attractor basin of the uncorrelated scale-free net-

works. Figure 5 shows the dynamical process of the evolu-
tion of the system. Although more than half of the nodes flip
their states at the first step, the system state is attracted to the
original functional state. In disassortative networks, nodes
with large degrees preferentially connect to nodes with small
ones. Under directed stimuli, the fraction of stimulated nodes
in the neighbors of the nodes in the middle degree class is
less than the fraction of the edge coming from stimulated
nodes. Thus, more nodes need to be stimulated than uncor-
related systems for inducing the system into a random state,
and the basin of attraction of disassortative system is ex-
tended.

For larger disassortative mixing systems, the second im-
printed functional state cannot be reached. The inset of Fig. 5
shows the dynamical process of evolution of a network real-
ization with r=−0.30. The system is induced into a stable
oscillation state, which is established by the interaction be-
tween large and small nodes. The system with a large disas-
sortative mixing property is easier to respond to the directed
stimuli by evolving into stable oscillation states. This struc-
tural property leads to the nonmonotonic behavior of sensi-
tivity versus Pearson correlation coefficient shown in Fig. 1.
Additionally, it is notable that the too large disassortative
degree correlation also destroys the ability of systems to re-
spond to directed stimuli with imprinted functional states, as
the too large assortative degree correlation.

In summary, we have studied the effect of the degree cor-
relation on the response of scale-free networks to stimuli.
Correlated scale-free networks retain the robustness to ran-
dom stimuli. In the region of the Pearson correlation coeffi-
cient in which we are interest, assortative scale-free networks
are more sensitive to directed stimuli than uncorrelated ones
and the sensitivity of scale-free networks is weaken when
networks are disassortative. We found that the effects of de-
gree correlation result from the properties of the dynamics of
degree-correlated network systems. Uncorrelated networks
respond to stimuli as a whole, while the degree correlation of
a network destroys the identical critical condition of all
nodes for the response to directed stimuli. Assortative scale-
free networks reduce the need for the size of directed stimuli
to respond via a cascade that progresses from higher- to

FIG. 4. �Color online� The number of flipped nodes in the pro-
cess of the evolution of two assortative systems with r=0.13
�squares� and r=0.15 �circles�. Inset: the number of nodes whose
state si�t� is the same as si

2.

FIG. 5. The number of flipped nodes in the process of disassor-
tative system, r=−0.16. Inset: system with r=−0.30. The size of
stimuli is 245.
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lower-degree classes. The disassortative correlation extends
the size of the basin of attraction by the nodes in the middle
degree class which has less stimulated neighbors and stays
on the initial state. But the response of too large assortative
and disassortative scale-free networks is destroyed by the
structure property and imprinted functional states cannot be
reached. Since many realistic complex networks have both
scale-free and degree-correlated properties, the intuitive de-

scription of the dynamics might contribute to understanding
of the attributes of realistic networks.
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